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Abstract

Background: Phylogenetic footprinting is an important computational technique for identifying cis-regulatory
motifs in orthologous regulatory regions from multiple genomes, as motifs tend to evolve slower than their
surrounding non-functional sequences. Its application, however, has several difficulties for optimizing the selection
of orthologous data and reducing the false positives in motif prediction.

Results: Here we present an integrative phylogenetic footprinting framework for accurate motif predictions in
prokaryotic genomes (MP3). The framework includes a new orthologous data preparation procedure, an additional
promoter scoring and pruning method and an integration of six existing motif finding algorithms as basic motif
search engines. Specifically, we collected orthologous genes from available prokaryotic genomes and built the
orthologous regulatory regions based on sequence similarity of promoter regions. This procedure made full use of
the large-scale genomic data and taxonomy information and filtered out the promoters with limited contribution
to produce a high quality orthologous promoter set. The promoter scoring and pruning is implemented through
motif voting by a set of complementary predicting tools that mine as many motif candidates as possible and
simultaneously eliminate the effect of random noise. We have applied the framework to Escherichia coli k12
genome and evaluated the prediction performance through comparison with seven existing programs. This
evaluation was systematically carried out at the nucleotide and binding site level, and the results showed that
MP3 consistently outperformed other popular motif finding tools. We have integrated MP3 into our motif
identification and analysis server DMINDA, allowing users to efficiently identify and analyze motifs in 2,072
completely sequenced prokaryotic genomes.

Conclusion: The performance evaluation indicated that MP3 is effective for predicting regulatory motifs in
prokaryotic genomes. Its application may enhance progress in elucidating transcription regulation mechanism,
thus provide benefit to the genomic research community and prokaryotic genome researchers in particular.
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Background
Identification of regulatory DNA motifs represents a fun-
damental step in the study of transcriptional regulation
mechanisms. Regulatory motifs typically facilitate the gene
transcriptional regulation as transcription factors binding
sites (TFBSs). Computational prediction of motifs in pro-
moters has evolved as an increasingly important problem
since it was proposed in 1980s [1–3]. In the past three
decades, a number of programs have been developed
such as AlignACE, Biprospector, CONSENSUS, MDscan,
MEME, CUBIC and BOBRO [4–13]. In spite of the
substantial number of applications that have been de-
veloped, it is still a very challenging problem and there
is much room for improvement in motif identification
performance [2, 3, 14, 15].
The phylogenetic footprinting strategy, first proposed

by Tagle et al. in 1988 [16, 17], has proven useful in de
novo motif finding. This strategy is based on a common
principle that the regulatory elements in promoters tend
to evolve at a lower rate and be more conserved at the
DNA sequence level than their surrounding non-
functional sequences. Following this line of research,
scientists first applied comparative genomics methods
[18] and co-regulation based motif finding tools on
orthologous promoters to detect regulatory signals.
Later, specific tools for phylogenetic footprinting [19–24]
were designed to improve the performance of motif
identification. In the last decade, with the increased
availability of sequenced prokaryotic genomes and the
sequence-similarity based orthology mapping technol-
ogy, researchers have made application of phylogenetic
footprinting less difficult and more powerful [25].
However, the application of phylogenetic footprinting

is still intractable for researchers, because almost all
existing methods require several tough procedures.
Many factors need to be considered for proper phylo-
genetic footprinting application use, such as reference
species selection, orthology mapping and promoter re-
gion cutting [15]. The noise induced by each of these
factors can increase motif prediction false positives. Fur-
ther the promoters generated for a set of orthologous
genes should be divergent enough so that the to-be-
identified motifs stand out, yet limit the mutations, thus
maintaining the conserved motif properties. Specifically,
phylogenetic footprinting applications have the following
limitations [16]: (i) Lack of reliable genome-scale operon
structure integration, which is essential for regulatory
motif prediction in prokaryotes [26, 27]; (ii) Lack of
universally applicable promoter collecting framework,
which makes full use of abundant sequenced genome
data. (iii) Neglecting to identify the phylogenetic rela-
tionship among promoters. (iv) The need for users to set
poorly-defined motif feature parameters or other algo-
rithmic thresholds. (v) Lack of intuitive and user-friendly

tools or web server, although some methods have been
proven effective on biological data sets. Most users do
not understand how to adjust these factors and applica-
tion parameters to ensure accurate motif prediction.
In this paper, we propose a framework for Motif

Prediction based on Phylogenetic footprinting (MP3)
(Additional file 1: Figure S1), aiming to avoid the draw-
backs described above and make the pipeline effective
and widely applicable. New strategies were developed for
(i) integrating the sequence-similarity and functional as-
sociation information in orthologous promoter selection,
(ii) promoter scoring and pruning through motif vot-
ing using a set of complementary predicting tools and
(iii) motif signal cross validation using a curve fitting
method. We validated MP3 using the whole genome
of E. coli K12, which has many documented TFBSs in
RegulonDB [28]. The performance was systematically eval-
uated and compared with seven other existing tools. The
comparisons show that MP3 has significantly improved
performance over other existing tools. We implemented
MP3 into a stand-alone program, which is available at
http://csbl.bmb.uga.edu/DMINDA/download.php. Fur-
thermore, the whole pipeline has also been implanted
into DMINDA (http://csbl.bmb.uga.edu/DMINDA/) [29],
which is an integrated web server for DNA motif predic-
tion and analyses based on our in-house motif identifica-
tion programs BOBRO [5, 30] and the DOOR2.0 database
containing operons for 2,072 prokaryotic genomes [27].
DMINDA allows MP3 to be readily applied on any of the
2,072 integrated prokaryotic genomes and provides a
user-friendly platform for visualization and display of the
prediction results.

Methods
MP3 has four components: reference promoter set (RPS)
preparation from sequenced prokaryotic genomes (Fig. 1a),
candidate binding region (CBR) detection by motif voting
strategy and peak finding (Fig. 1b), candidate binding
region clustering based on a graph model (Fig. 1c), and
motif profile identification through curve fitting (Fig. 1d).

Preparation of reference promoter set (RPS) of a given
gene in MP3

Collection of orthologous promoters: The traditional strat-
egy for orthologous gene collection in phylogenetic foot-
printing relies on choosing several species in advance
[15, 25, 31, 32]. This can limit the quantity and quality
of available orthologous genes. MP3 collects the ortholo-
gous genes from a large set of references genomes, i.e.
“big data source”. Specifically, (i) we used the recent
orthology detection tool, GOST [33] to identify the
orthologous genes of any given prokaryotic gene in the
reference genomes. These genomes belong to the same
phylum, but a different genus than that of the target
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gene, and we took only one genome into consideration
for each genus to avoid redundancy. We (ii) then ex-
tended the orthologous relationship from gene to operon
level. Thus, for a given gene, its host operon is denoted
as o0 = {g1, g2,…, gr}(r ≥ 1) and the operons in the reference
genomes that contain orthologous genes of any gi in o0
(i = 1, …, r) are considered as orthologous operons of o0,
denoted as {o1, o2, …, on}. Their promoter sequences are
defined as corresponding upstream regulatory regions (up
to 300 bp), denoted as p0 and {p1, p2, …, pn}, respectively.
Then iii), we define the promoter set P = {p1, p2, …, pn} as
the orthologous promoters of p0.
Reference Promoter Set (RPS): The preliminary ortholo-

gous promoter set obtained above could not be directly
used to predict motifs, as the large data set size and un-
considered phylogenetic relationships can overpower the

conserved motif signal. MP3 polished the preliminary
promoter set to generate a reference promoter set (RPS),
which was of reasonable size and with conserved signifi-
cant motifs, i.e. “reduced final set”. Our selection strat-
egy was partly inspired by McCue et al., who claimed
that three well-selected reference promoters might be
sufficient to identify a motif on a given human gene
[15]. We improved this model for application in pro-
karyotes by selecting three groups of orthologous se-
quences instead of just three sequences. In addition,
rather than using existing phylogenetic tree based on
species, phylogenetic trees were assembled for each
group of orthologous promoters. Before selection, the
phylogenetic tree of orthologous promoter sequences
was built by ClustalW [18], and the distance scores of
this tree were used to represent the distance between

a

b d

c

Fig. 1 An outline of the MP3 framework. a RPS preparation based on sequenced genome from NCBI, operon information retrieved from DOOR,
and identified orthologous genes for a target gene using GOST. The promoters of orthologous operons are generated and then are refined to
build RPS. b CBR detection by voting strategy and peak finding. The predicted motifs by six tools (short sequences) are mapped back on promoter
sequences, and generate score curves. The peaks on the curve are identified as CBR by a peak calling method. c CBR clustering based on a new
graph model. r0, r1… are CBRs on promoters, which are clustered together as a related CBR set R1. The motif finding will performed on these clusters
(R1, R2, …, Rt) again to build motif profiles. d Motif profiles identification and motif width optimization through curve fitting
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any pair of orthologous promoter sequences. MP3 then
divided P into three groups, P1, P2, and P3, corresponding
to highly similar to, relatively similar to, and distant from
p0, according to the thresholds obtained by analyzing the
distribution of distance scores between orthologous pro-
moters (Additional file 1: Method S1 and Figure S2). MP3

first selected three reference promoters from each group,
and then added three more from P3, because P3 has many
more orthologous promoters. In this selection, we consid-
ered the additional following factors: (i) The promoters
whose operons had the same leading orthologous genes
with O0 had higher priority to be chosen. (ii) The pro-
moters were re-ranked based on a genomic similarity
score (GSS) [33], which was calculated as the fraction of
genes in the target genome, which have orthologous genes
in the reference genome. We selected promoters with
higher GSS based on the assumption that the genome
with higher GSS tends to have regulatory mechanism
more similar to that of the target genome [15]. (iii) Any
two selected promoters were required to have a mutual
distance score greater than 0.05 to avoid redundant pro-
moters. Finally, the selected reference promoters, along
with p0 itself, composed a reference promoter set (RPS),
which was expected to contain key motif signals and have
a reasonable size with the consideration of computational
efficiency. More details about RPS generation are provided
Additional file 1: Method S1.

Pruning promoter to identify Candidate Binding Region (CBR)
For a given gene, the RPS can be used to prune its corre-
sponding promoter p0 and identify rough TF binding re-
gions through a voting strategy by integrating multiple
motif finding tools (Fig. 1b). Six widely used de novo motif
finding tools, Biprospector, BOBRO, MDscan, MEME,
CUBIC, and CONSENSUS [4, 5, 8–11], were applied to
the RPS to identify conserved motifs with lengths ranging
from 5 to 30, and for each length, we kept the top ten pre-
dicted motifs (if available). The predictions for a specific
program can be denoted as

S ¼∪30
l¼5
∪10
t¼1

Slt ð1Þ

where Slt represents the t-th motif in the prediction with
length l. If Slt contains an instance from p0, denoted as s,
its contribution will be added to the voting score Ci (set
to 0 initially) using the following formula (Fig. 1b),

Ci ¼ Ci þ V s; for i ∈ ijbs ≤ i ≤ esf g; ð2Þ
where bs and es represent the starting and ending posi-
tions of s along p0, and

Vs ¼ 1
Sl•j j 1 þ logtð Þ ; Sl• ¼ ∪10

t¼1
Slt ð3Þ

where t is the rank of motif profile, which motif instance
s belongs to, in prediction results for input length l. In-
tuitively, such voting scores are reliable and informative
as different tools do have complementary effects [6, 14]
while the false positive noise tend to randomly distrib-
ute in p0. The voting scores generally represent the
support obtained from multiple predictions. The larger
a score, the higher probability that the site overlaps
true TFBSs. Additionally, we normalized the contribu-
tion of different predictions by introducing Sl., instead
of directly counting the number of predicted segment
covering each site, since the output size of motif finding
tools may be very different.
Application of a pick calling strategy to the voting

scores allows a set of CBRs to be identified, each of
which is recognized as a continuous genomic segment of
p0, containing nucleotides with significant higher voting
scores than the surrounding sequence. Additional details
can be found in Additional file 1: Method S2. The CBRs,
as primary output of MP3, can be used by researchers
directly in genetic engineering to locate the functional
regulatory regions of a promoter.

Clustering of correlated CBR set
The CBR sets identified in the target and reference pro-
moters are used to build motif profiles (Fig. 1c). A simi-
larity graph G with all CBRs represented as vertices and
edges connecting every pair of vertices was constructed.
The weight of edges are set as the correlation scores
between two corresponding CBRs as follows: (i) p0 and
p1 are the target promoter and a reference promoter,
respectively; (ii) a CBR c0 in p0 begins at b0 and ends at
e0 (−|p0| ≤ b0 < e0 ≤ −1) and another CBR c1 begins at b1
and ends at e1 in p1 (the start of coding regions as the
origin position 0). (iii) the correlation score W(c0, cj)
between the two CBRs was evaluated:

W c0; c1ð Þ ¼ 1−
jb0 � b1j

max b0j j; b1j jf g
� �

� S c0; c1ð Þ ð4Þ

where S(c0, c1) was the sequence similarity score, calcu-
lated by aligning c0 and c1. The weight of the edge that
connects CBRs of the same promoter will be set as 0.
Clearly, the higher a weight, the more correlated the two
corresponding CBRs were. The relative location of CBR
pairs S(c0, c1) was also considered as the position of
many TFBSs tend to be conserved in evolution [34].
Intuitively, a set of highly correlated CBRs should be

connected by large weights producing a subgraph of G,
i.e. subgraph with large edge weight, because these cor-
relations should make the weight of each involved edge
larger. It should also be noted that identifying all heavy
subgraphs in a weighted graph itself was NP-hard.
Hence, we identified the CBR clusters in a heuristic way:

Liu et al. BMC Genomics  (2016) 17:578 Page 4 of 12



(i) we sorted the edges in G in decreasing order of their
weights and only keep the top 1/3. One third was abso-
lutely enough because the graph with only real connec-
tions should be sparse. However, the random cliques have
little chance to survive because graph G is a multi-partite
graph; (ii) we obtained the induced sub-graph of a CBR in
target promoter and its neighbors in other promoters; and
(iii) we detected the maximal clique in induced sub-graph
and then expanded it by including the highly connected
vertex. The CBRs corresponding to the vertex in each
cluster composed the correlated CBR set in which the
motif profile identification will be carried out.

Identification of candidate motif profiles
Building Motif profiles from correlated CBR set. We ap-
plied our motif finding tool, BOBRO [5] on the identified
CBR sets to generate candidate motif profiles. Outstand-
ing motif instances were identified using the support from
several motif finding tools (Fig. 1d).
It was still very challenging to evaluate motif profiles

with different widths. Although BOBRO and MEME are
capable of detecting motif width on co-regulated pro-
moters, they may fail on phylogenetic footprinting data,
because the flanking regions of motifs in orthologous
promoters are usually conserved to some extent. In
MP3, a curve fitting method was designed to detect the
motif profiles with an optimized width for phylogenetic
footprinting. The BOBRO predicted motif profiles have
a width from 6 to 22 and corresponding IC (information
content) scores, which are calculated by the formula:

IC wð Þ ¼
Xw
j¼1

X4
i¼1

f ij log
f ij
bi

ð5Þ

where (fij) is the probability of nucleotide type i appear-
ing at position j in the motif profile, and bi is the prob-
ability of i appearing in the background sequence which
is calculated on all input promoter sequences. However,
IC cannot be directly used to compare different motif
profiles, because they are width-dependent. MP3 re-
gresses the correlation function between the IC and the
width of motif profile by minimizing

Σ
22

w¼ 6

IC wð Þ − f wð Þ½ �2 ð6Þ

on the conjectured function:

f wð Þ ¼ a ⋅ eβw þ γ ð7Þ
where α, β and γ are fitting coefficients. Then, we took
the difference between the real IC scores and fitting scores
for each profile, i.e. the residual of above regression,

r wð Þ ¼ IC wð Þ ‐ f wð Þ ð8Þ

as the criterion to select the best motif profile. Basically,
the motif profiles whose r(w) are local maximum are
ranked in the decreasing order of r(w).

MP3 application and performance evaluation using E. coli
genome
Data Acquisition. We used E. coli K12 as the target gen-
ome and another 216 selected prokaryotic genomes from
the Proteo-bacteria phylum as references to test MP3

methods and the applications. The genome data were
downloaded from the NCBI database (released as of
November 2011). The 216 reference genomes were ob-
tained from 216 different genera (a general principal for
orthologous data for MP3) to avoid potential selection bias
in comparative genomics studies [33]. The operons of
these genomes were retrieved from the DOOR2.0 operon
database [27, 35], and the documented motifs in E. coli
were obtained from RegulonDB [28]. We linked the docu-
mented TFBSs in E. coli to their target operons and then
to corresponding promoters in the identified 2,252 RPSs.
Figure 2d showed that 583 of the 2,379 operons have ex-
perimentally confirmed TFBSs (solid bars in black) in their
regulatory regions. Twenty of these 583 operons and their
corresponding TFBSs were removed since they did not
have enough orthology. The remaining 563 promoter se-
quences, containing 2,048 binding sites, were used to
evaluate the performance of MP3. Besides, we down-
loaded Sigma 70 binding promoters of E. coli from the
RegulonDB and conducted analysis to see the correlation
between orthology and Sigma 70 binding in E. coli.
Performance evaluation. To conduct performance

comparison, we applied six de novo motif finding tools
previously mentioned, i.e., Biprospector, CONSENSUS,
MDscan, MEME, CUBIC, BOBRO and a phylogenetic foot-
printing pipeline MicroFootprinter [4–13, 21, 25, 30, 36] on
the same genome and compared with MP3. We followed
Tompa’s method [14] and assessed the predictions both at
nucleotide level and at the binding site level. Specifically,
we calculated the sensitivity (nSN), positive prediction value
(nPPV), specificity (nSP), performance coefficient (nPC)
and correlation coefficient (nCC) at nucleotide level, and
calculated the sensitivity (sSN), positive prediction value
(sPPV), and average site performance (sASP) at site level.
In addition, we added the widely used F-score (sFS) at site
level for better evaluation. The calculation details for these
measures can be seen in Additional file 1: Method S3. We
followed Tompa’s criterion to indicate that a predicted site
overlaps a known TFBS if they overlapped by at least 1/4
the length of known site [14].

Functional enrichment analysis according to the KEGG
database
For a set of operons in E. coli, we did functional enrich-
ment analysis of the corresponding genes with DAVID
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[37]. Specifically, given a set of operons, their genes were
picked from the DOOR2 database [27] and submitted to
DAVID as the input gene list with this genome as back-
ground genome. The p-values were calculated in terms
of a Bonferroni-corrected modified Fisher's exact test
under the null hypothesis that this set of genes was not
enriched with certain biological functions.

Results
MP3 was applied on all the 4,146 genes of E. coli K12,
with all the documented TFBSs from the RegulonDB
database. The unique features of MP3 resulted in a posi-
tive effect in motif finding: the new strategy for ortholo-
gous promoter sequences selection makes phylogenetic
footprinting efficiently applicable on most of prokaryotic
genes, e.g. 90.5 % (2,252 out of 2,379) of E. coli operons
have at least three orthologous operons. The promoter
pruning method with motif voting and peak calling re-
duced the false positive rate, the positive prediction
value increased from 0.43 to 0.584 and the F-score in-
creased from 0.191 to 0.306 in performance evaluation
on binding site level. The curve fitting for motif width
optimization in the last step helped to build high quality
motif profiles. In addition, with implementation of MP3

in DMINDA, users can obtain the motif prediction by

simply clicking the name of a gene from each of the
2,072 prokaryotic genome in our back-end database and
conduct further analyses (e.g. motif comparison, motif
clustering, and motif co-occurrence analysis) for pre-
dicted motifs on the DMINDA platform.

Orthologous repertoires of genes in E. coli K12 and their
properties
For all 4,146 E. coli genes, 250,804 orthologous gene
pairs between E. coli and each of the 216 reference ge-
nomes were identified by GOST. The distribution of the
number of orthologs for all the target genes, ranging
from 0 to 216, represents a huge difference from gene to
gene (Fig. 2a). It indicated that the widely used species
selection method, i.e. choose a few species before ortho-
log generation, may fail to obtain enough orthologs. Fur-
thermore, this observation raised two questions: Is there
any correlation between ortholog number and its tran-
scriptional regulation mechanism for a specific gene;
and what kinds of genes have more orthologs than the
others? The answers to these questions may guide the
application by identifying which genes are more suitable
for the phylogenetic footprinting strategy.
Gene’s transcriptional regulation is correlated with the

number of its orthologous genes. The RegulonDB database

a

c d

b

Fig. 2 The information about genes, orthologous, regulatory activities, and promoters. a The distribution of orthologous gene number: The x-axis
is the number interval of orthologous genes; the y-axis is the number of genes whose orthologous number is in the corresponding interval. The
solid parts represent the genes having known regulatory activities. b The correlation between orthologous number and regulatory activities: The
x-axis is the number interval of orthologous genes; the y-axis is the proportion of genes with known regulatory activities in corresponding gene
groups. c The box-plot of orthologous number distribution for gene sets S1, S2 and S3. S1 represents the whole gene set of E. coli; S2 and S3 are
the central metabolism genes and all pathway genes respectively. The genes in S2 and S3 have significantly more orthologous compared to S1
with Wilcox p-values both as 2.2e-16, and the genes in S2 have little more orthologous than S3 with Wilcox p-value as 0.17. d The distribution of
orthologous operon number: The x-axis is number interval of orthologous operons; and the y-axis is the number of operons whose orthologous
number within corresponding intervals. The solid parts represent the operons having known TFBSs in regulatory regions
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showed that 1,546 genes are regulated by one or more
TFs, among all the 4,146 genes defined as known regula-
tory activities in our study. All 4,146 genes were divided
into 18 groups according to the number of orthologous
genes they contain (Fig. 2b). The results indicated that
the genes with moderate number of orthologs tended
to have more confirmed regulatory activities, while the
genes with many or few orthologs tended to have less
known regulatory activities. We hypothesize that the
genes with more orthologs play essential function in
cell, thus tend to keep a consistently high expression
level and probably need less regulation. We also ana-
lyzed the correlation between Sigma70 binding motifs
and the number of orthologs on operon level, and
found that the operons with more orthologs tend to
have Sigma 70 binding motifs (Additional file 1: Result S1
and Figure S3). This finding confirmed our hypothesize as
Sigma 70 factors keep essential genes and pathways
operating as a “housekeeping” sigma factor [38].
Meanwhile, genes with few orthologs usually have a
specific function in their host genome; therefore, have
both simple and specific regulation. In contrast, genes
with a moderate number of orthologs have more re-
sponsibilities in biological diversity and have more
regulation activities.
Genes having more orthology information tend to be

functionally necessary. We ranked all operons in the de-
creasing order by their number of orthology and took
the top 100 for functional annotation analysis according
to the KEGG database [39]. The results showed that the
most enriched function among them is Ribosome, which
is the most important and essential function in any or-
ganism (Additional file 1: Table S1). The analysis also
showed that the genes involved in known metabolic
pathways (especially those in central metabolism) ac-
cording to KEGG database do have significantly more
orthologs compared to the others (Fig. 2c).

Generation of 2,252 RPSs for E. coli K12 operons
The 4,146 genes in E. coli genome fell into 2,379 operons
according to the DOOR2.0 database, giving rise to 2,379
target promoters (Table 1). The 250,804 orthologous gene
pairs, between E. coli and reference genomes, were ex-
tended to 195,518 orthologous operon pairs, to facilitate
the orthologous promoter sequences extraction. 90.5 %
(2,252 out of 2,379) of E. coli operons have at least three
orthologous operons with the average number as 81.1
(Fig. 2d), indicating that phylogenetic footprinting can be
applied on most of prokaryotic genes. The rapid growth of
genomic sequences from multiple organisms will further
enhance the reliability of this large-scale search strategy.
For 332 out of 2,252 operons (14.7 %), we simply added all
orthologous promoters to their RPSs, as they had no more
than 12 orthologous operons. Regarding the other 1,920

operons (85.3 %), MP3 builds the RPSs with the goal to
compress promoter set without losing significance of
conserved motifs (see details in Methods). Finally, we
obtained 2,252 RPSs, containing an average of 11.3 ref-
erence promoters.

Prediction of conserved motifs in E. coli K12
In total, MP3 generated 12,820 CBRs for the 2,252 pro-
moters, i.e., averagely 5.7 CBRs per target promoter
(Table 1). A total of 93 % of the CBRs have length from
14 to 22 bps, which are associated with the width of
peaks on the voting curve; while some CBRs are longer
than average, which may be caused by the overlap of
multiple binding sites in the promoters. For those 563
promoters with known TFBSs, 3,205 CBRs were identi-
fied. If we only considered the top CBR for each pro-
moter, the 563 CBRs cover 455 known TFBSs, i.e., an
average of three TFBSs for four promoters, thus a high
accuracy with low false positives. However, the 455
TFBSs only accounted for 22 % of all 2,048 binding sites.
This was mainly because many operons are regulated by
multiple TFs and have multiple TFBSs. So it was worth-
while to consider more CBRs to better elucidate the
motif information. We found that the top 5 CBRs cover
1,133 known TFBSs (55 % of all) and simultaneously

Table 1 The summaries of orthologous and motif prediction
on E. coli K12 by MP3

Statistics on orthologous and prediction

Genes 4,146

Genes with known regulatory activities 1,546

Average number of orthologous genes 60.49

Operons 2,379

Operons with more than 2 orthologous operons 2,252 (90.5 %)

Average number of orthologous operons 81.1

Promoter sequences 2,252

Operons with known TFBSs 583

CBRs by MP3 12,820

Motif profiles by MP3 (Alternatives) 12,820 (76,732)

Data in evaluation

Promoter sequences with known TFBSs 563

The known TFBSs 2,048

Evaluation results on 563 promoters

CBRs by MP3 3,205

Motif profiles by MP3 (Alternatives) 3,205 (22,388)

Top CBRs 1 2 3 4 5

CBR coverage 455
(22 %)

710
(35 %)

925
(45 %)

1,080
(53 %)

1,206
(59 %)

Motif Profiles
coverage

425
(21 %)

675
(33 %)

878
(43 %)

1,022
(50 %)

1,133
(55 %)
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brought more false positives. MP3 built motif profiles
from all the 12,820 CBRs and output those with the
highest confidence level from each by a curve fitting
method, i.e. 12,820 motif profiles. These profiles can be
used to identify new binding sites in other promoters or
detect co-regulated operons through motif comparition.

Performance comparison with existing motif-finding tools
We compared the prediction of MP3 with six de novo
motif finding tools: BOBRO, MDscan, Bioprospector,
MEME, CONSENSUS, CUBIC, and MicroFootprinter.
MicroFootprinter is designed for phylogenetic footprint-
ing on prokaryotic genomes and can generate ortholo-
gous promoters on its web-server; MDscan is designed
for motif-finding on ChIP-Chip data; and the others are
general de novo motif-finding tools. We chose default
parameters for each of them, because the comparison
was performed on the genome scale thus it was unrealis-
tic to specifically adjust parameters for each individual
gene in a trial-and-error way. The prediction results of
MicroFootprinter were obtained from its web server
manually, and it gave valid prediction only for 114 pro-
moters among all 563 promoters with known TFBSs.
The other six tools were tested on the RPSs identified by
our framework, since applying de novo motif finding
tools directly on a rough promoter sequence set is obvi-
ously naïve and unreliable.
Using MP3 and seven other tools, we calculated nPC,

nCC, sFS and sASP according to their best output
(Fig. 3a). Unlike sensitivity or specificity, these measures
were capable of evaluating the overall performance of

prediction. The comparison showed that MP3 outper-
formed by 98 % in nPC, 88 % in nCC, 60 % in sFS and
46 % in sASP over MDscan, which is the best of the
other seven tools. There are on average 2.8 TFBSs for
each of 563 promoters according to known TFBS, and
only a fraction of TFBSs have been documented. There-
fore, we further compared the performance of these
tools on their top five predictions. In this case, the im-
provement made by MP3 over the best one of other
seven tools (CUBIC) are 25.3 % in nPC, 8.1 % in nCC,
35.7 % in sFS and 38.6 % in sASP. It is worth noting
that, even though MicroFootprinter provides much
fewer results, its predictions have higher specificity.
MDscan had a relatively higher performance than the
other published tools. MDscan starts on an enumeration
strategy on the top several sequences, which is more
adaptable to the data of phylogenetic footprinting motif
finding. Additional performance statistics can be seen in
Additional file 1: Table S2.

Performance bias of TFBSs prediction according to their
different locations within a promoter
Interestingly, we found that MP3 has better performance
for the documented TFBSs near their downstream genes
than those far from their downstream genes. Specifically,
we considered the −100 site upstream from the transla-
tion start site of a gene as a boundary, by which the
whole intergenic region was divided into two parts. The
region [−100, −1] is denoted as the near regions, and the
other part of the intergenic region is called the far re-
gion. Then we did the similar performance evaluation as

a

b

Fig. 3 Representative statistics comparing the accuracy of MP3 with other tools. The statistics in (a) and (b) are calculated by taking top one and
top five prediction into consideration correspondingly
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described in above Methods and Results section. The
evaluation results showed that the performance was
much better in detecting the binding sites in the near
regions than in the far regions (Fig. 4 and Additional
file 1: Table S3). We believe that the possible reasons for
this bias could be: (i) the binding sites located in the far
regions have greater probability to be regulatory elements
of other neighboring genes, but were computationally
assigned to the target gene in mistake; (ii) the specific
binding mechanism of some TFs do not require constant
binding location. Hence the distance between their bind-
ing sites and the target genes may be more flexible, thus
easy to be missed by MP3, whose CMP clustering algo-
rithm prefers the binding sites with constant locations.
It should also be noted that there are alternative tran-

scription units inside the operons in prokaryote, and the
motifs may be located on inner-operon no-coding regions
[27, 28]. Hence, another issue in phylogenetic footprinting
is how to deal with these non-coding regions within op-
erons. Considering that these motifs account for only a
limited fraction of the motifs, we simply ignored these re-
gions in MP3 by default to reduce the potential noise in-
duced by adding them. For the users who are interested in
this kind of motif, we suggest they manually connect the
inner-operon non-coding sequences on the tail of target
promoter and carry out the same motif finding analysis on
MP3 web-server to retrieve all the conserved motifs.

MP3 Implementation in DMINDA
The whole pipeline of MP3 has also been implanted into
DMINDA [29], which is an integrated web server for
DNA motif prediction and analyses using our in-house
motif identification program BOBRO [5] and the
DOOR2.0 database containing operons for 2,072 pro-
karyotic genomes. We listed all genes for the 2,072 pro-
karyotic genomes and the orthologous promoter were
collected using the same method on E. coli, thus users
can perform this proposed motif finding framework on
them in several clicks. Current motif-related tools im-
planted in DMINDA, e.g. motif scanning and compar-
ing, are available to assist the users needing to use

other protocols beyond the motif prediction for specific
biological hypotheses. Details about the implementation
of MP3 in DMINDA can be seen in Additional file 1:
Result S2 & Figure S4.

Discussion
The phylogenetic footprinting technique has several in-
trinsic limitations in de novo motif finding. For example,
it cannot be used on genes that have almost no orthol-
ogy in other sequenced genomes; and it is incapable of
identifying TFBSs that have no conservation properties
at the sequence level (i.e., lack of sequence specificity)
[40]. Lateral gene transfer and operon structure exist
widely throughout prokaryotic genomes unlike in verte-
brates. Therefore, direct use of the species tree and the
phylogenetic tree inferred from the targets genes, as
done in current published methods, is not the best
choice for prokaryotic genomes [25]. However, an im-
proved phylogenetic footprinting method would be use-
ful as it also has important applications for elucidating
the underlying gene regulatory networks [41]. Recently,
Novichkov et al. proposed an algorithm Regpredict to gen-
erate regulons, which are defined as maximal co-regulated
gene sets [42, 43]. Regpredict takes advantage of phylogen-
etic footprinting to reduce the false positives, thus improves
the reliability of predicted regulon on multiple genomes.
MP3 was developed to overcome the drawbacks of the

existing phylogenetic footprinting tools. The MP3 frame-
work (Fig. 1) has the following unique features: (i) full
consideration of the operon structures; (ii) new pro-
moter collection method following a principle named as
big data source, reduced final set, which not only takes
advantage of high throughput genomic data, but also
considers the computational efficiency; (iii) extracting
phylogenetic relationship from regulatory sequences to
refine the orthologous promoter set. (iv) pruning pro-
moters to generate CBRs based on the weighting score
on each nucleotide, which is generated by a voting strat-
egy on six popular motif finding tools; and (v) a curve-
fitting method to identify optimal motif profiles. Based
on these features, MP3 had a much better performance
in motif finding.

a b

Fig. 4 Performance comparison of MP3 on the near and far upstream region of target genes on the top one predictions (a) and top five
predictions (b) correspondingly for each promoter
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For our new phylogenetic footprinting pipeline, a po-
tential and reasonable improvement is integrating some
experimental data, if available, e.g. Chromatin immuno-
precipitation followed by sequencing (ChIP-seq). It is a
technique used for genome-wide profiling of DNA-
binding proteins, histone modifications, or nucleosomes;
and has become an indispensable tool for studying gene
regulation [44, 45] as it can provide transcription factor
binding information with higher resolution, less noise,
and greater coverage than traditional array-based prede-
cessor, like ChIP-chip [46]. However, it cannot replace
the computational prediction tools particularly for
prokaryote. Firstly, there is very small amounts ChIP-seq
data available for prokaryote [47]; secondly, ChIP-seq is
not suitable for TFs with only a few binding sites;
thirdly, the complexity of regulation can also lead to bias
because TFs may not bind on their binding sites in cer-
tain environments. Specifically, the score curves used in
MP3 can be further optimized by integrating the binding
signal from ChIP-seq, using machine learning or pattern
classification. The ChIP-seq based peaks and CBRs
identified by MP3 can be cross-validated by each other
in application, aiming to overcome some intrinsic com-
putational challenges in high-throughput data analyses.
Upon the availability of large-scale ChIP-seq data in
prokaryote [47], we believe that the information inte-
gration in our framework can further improve the per-
formance in motif prediction and analysis.
An intuitive application of the MP3 motif prediction

pipeline is to elucidate the genome-scale transcription
regulatory network, which is one of the most important
goals in systems biology. It can help infer how gene
regulatory networks will respond under various condi-
tions or with specific genetic perturbations; and to
understand how different gene expression states are con-
trolled by their underlying regulatory systems. Mathem-
atically, this is modeled as a regulon identification
problem, aiming to identify all the co-regulated genes by
each of regulatory transcription factors. We note that
there is a limitation in the MP3 application. For pre-
dicted motif profiles, we found that the motif profiles
composed by orthologous binding sites may not per-
fectly coincide with those composed by binding sites of
co-regulated genes in the same genome. For example,
the transcription factor ArgR has 25 known binding sites
in E. coli. The orthologous binding sites from the pro-
moters of gene argR and its orthologous showed high
similarity with only eight out of the 25, thus the motif
logos have some differences (Additional file 1: Figure S5).
The reason for this phenomenon may lie in the evolution
mechanism for binding sites. The differences in ortholo-
gous binding sites are caused by heredity while the bind-
ing sites upstream of co-regulatory genes may be caused
by gene duplication or even random mutation, thus

leading to variation in these two motif profiles. The
phenomenon described above may challenge the compu-
tational application and require additional algorithm de-
velopment in motif based regulon construction.

Conclusion
In this paper, we designed a new framework, MP3, for
phylogenetic footprinting motif identification and provide
it as a web service. The framework is based on several
new ideas, integrated several existing motif finding tools,
conquered the existing obstacles for orthology generation,
false positive elimination etc. MP3 first generates CBRs,
which may be directly used by researchers who only care
to identify the functional regulatory regions of target
genes; and then produces motif profiles for those that
need motif profiles for motif search and comparison. The
automatic pipeline of data acquisition, processing and im-
plantation as web server allow easy application of MP3 to
most sequenced prokaryotic genomes. Application on E.
coli K12 genome in this study showed that MP3 worked
better than existing motif finding tools and provides ac-
curate results with less redundancy. We believe that MP3

will enhance progress toward elucidating the transcription
regulation mechanism, especially for the genomes that
have not been well studied. Thus, MP3 will benefit the
genomic research community, and prokaryotic genome
researchers in particular. In addition, using MP3 with
other experimental techniques and knowledge will provide
more reliable and useful results for regulatory research.

Additional file

Additional file 1: Method S1-S3, Result S1-2, Figure S1-S5, Table S1-S3.
(PDF 2276 kb)
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